164 research outputs found

    Remote Sensing and Deep Learning to Understand Noisy OpenStreetMap

    Get PDF
    The OpenStreetMap (OSM) project is an open-source, community-based, user-generated street map/data service. It is the most popular project within the state of the art for crowdsourcing. Although geometrical features and tags of annotations in OSM are usually precise (particularly in metropolitan areas), there are instances where volunteer mapping is inaccurate. Despite the appeal of using OSM semantic information with remote sensing images, to train deep learning models, the crowdsourced data quality is inconsistent. High-resolution remote sensing image segmentation is a mature application in many fields, such as urban planning, updated mapping, city sensing, and others. Typically, supervised methods trained with annotated data may learn to anticipate the object location, but misclassification may occur due to noise in training data. This article combines Very High Resolution (VHR) remote sensing data with computer vision methods to deal with noisy OSM. This work deals with OSM misalignment ambiguity (positional inaccuracy) concerning satellite imagery and uses a Convolutional Neural Network (CNN) approach to detect missing buildings in OSM. We propose a translating method to align the OSM vector data with the satellite data. This strategy increases the correlation between the imagery and the building vector data to reduce the noise in OSM data. A series of experiments demonstrate that our approach plays a significant role in (1) resolving the misalignment issue, (2) instance-semantic segmentation of buildings with missing building information in OSM (never labeled or constructed in between image acquisitions), and (3) change detection mapping. The good results of precision (0.96) and recall (0.96) demonstrate the viability of high-resolution satellite imagery and OSM for building detection/change detection using a deep learning approach

    Building change detection in Multitemporal very high resolution SAR images

    Get PDF

    An explainable convolutional autoencoder model for unsupervised change detection

    Get PDF
    Abstract. Transfer learning methods reuse a deep learning model developed for a task on another task. Such methods have been remarkably successful in a wide range of image processing applications. Following the trend, few transfer learning based methods have been proposed for unsupervised multi-temporal image analysis and change detection (CD). Inspite of their success, the transfer learning based CD methods suffer from limited explainability. In this paper, we propose an explainable convolutional autoencoder model for CD. The model is trained in: 1) an unsupervised way using, as the bi-temporal images, patches extracted from the same geographic location; 2) a greedy fashion, one encoder and decoder layer pair at a time. A number of features relevant for CD is chosen from the encoder layer. To build an explainable model, only selected features from the encoder layer is retained and the rest is discarded. Following this, another encoder and decoder layer pair is added to the model in similar fashion until convergence. We further visualize the features to better interpret the learned features. We validated the proposed method on a Landsat-8 dataset obtained in Spain. Using a set of experiments, we demonstrate the explainability and effectiveness of the proposed model

    Inter-Comparison of Methods for Lake Chlorophyll-a Retrieval: Sentinel-2 Time-Series Analysis

    Get PDF
    Different methods are available for retrieving chlorophyll-a (Chl-a) in inland waters from optical imagery, but there is still a need for an inter-comparison among the products. Such analysis can provide insights into the method selection, integration of products, and algorithm development. This work aims at inter-comparison and consistency analyses among the Chl-a products derived from publicly available methods consisting of Case-2 Regional/Coast Colour (C2RCC), Water Color Simulator (WASI), and OC3 (3-band Ocean Color algorithm). C2RCC and WASI are physics-based processors enabling the retrieval of not only Chl-a but also total suspended matter (TSM) and colored dissolved organic matter (CDOM), whereas OC3 is a broadly used semi-empirical approach for Chl-a estimation. To pursue the inter-comparison analysis, we demonstrate the application of Sentinel-2 imagery in the context of multitemporal retrieval of constituents in some Italian lakes. The analysis is performed for different bio-optical conditions including subalpine lakes in Northern Italy (Garda, Idro, and Ledro) and a turbid lake in Central Italy (Lake Trasimeno). The Chl-a retrievals are assessed versus in situ matchups that indicate the better performance of WASI. Moreover, relative consistency analyses are performed among the products (Chl-a, TSM, and CDOM) derived from different methods. In the subalpine lakes, the results indicate a high consistency between C2RCC and WASI when a_CDOM (440) < 0.5 m^-1, whereas the retrieval of constituents, particularly Chl-a, is problematic based on C2RCC for high-CDOM cases. In the turbid Lake Trasimeno, the extreme neural network of C2RCC provided more consistent products with WASI than the normal network. OC3 overestimates the Chl-a concentration. The flexibility of WASI in the parametrization of inversion allows for the adaptation of the method for different optical conditions. The implementation of WASI requires more experience, and processing is time demanding for large lakes. This study elaborates on the pros and cons of each method, providing guidelines and criteria on their use

    Physics-based Bathymetry and Water Quality Retrieval Using PlanetScope Imagery: Impacts of 2020 COVID-19 Lockdown and 2019 Extreme Flood in the Venice Lagoon

    Get PDF
    The recent PlanetScope constellation (130+ satellites currently in orbit) has shifted the high spatial resolution imaging into a new era by capturing the Earth’s landmass including inland waters on a daily basis. However, studies on the aquatic-oriented applications of PlanetScope imagery are very sparse, and extensive research is still required to unlock the potentials of this new source of data. As a first fully physics-based investigation, we aim to assess the feasibility of retrieving bathymetric and water quality information from the PlanetScope imagery. The analyses are performed based on Water Color Simulator (WASI) processor in the context of a multitemporal analysis. The WASI-based radiative transfer inversion is adapted to process the PlanetScope imagery dealing with the low spectral resolution and atmospheric artifacts. The bathymetry and total suspended matter (TSM) are mapped in the relatively complex environment of Venice lagoon during two benchmark events: The coronavirus disease 2019 (COVID-19) lockdown and an extreme flood occurred in November 2019. The retrievals of TSM imply a remarkable reduction of the turbidity during the lockdown, due to the COVID-19 pandemic and capture the high values of TSM during the flood condition. The results suggest that sizable atmospheric and sun-glint artifacts should be mitigated through the physics-based inversion using the surface reflectance products of PlanetScope imagery. The physics-based inversion demonstrated high potentials in retrieving both bathymetry and TSM using the PlanetScope imagery

    Water Quality Retrieval from Landsat-9 (OLI-2) Imagery and Comparison to Sentinel-2

    Get PDF
    The Landsat series has marked the history of Earth observation by performing the longest continuous imaging program from space. The recent Landsat-9 carrying Operational Land Imager 2 (OLI-2) captures a higher dynamic range than sensors aboard Landsat-8 or Sentinel-2 (14-bit vs. 12-bit) that can potentially push forward the frontiers of aquatic remote sensing. This potential stems from the enhanced radiometric resolution of OLI-2, providing higher sensitivity over water bodies that are usually low-reflective. This study performs an initial assessment on retrieving water qual-ity parameters from Landsat-9 imagery based on both physics-based and machine learning mod-eling. The concentration of chlorophyll-a (Chl-a) and total suspended matter (TSM) are retrieved based on physics-based inversion in four Italian lakes encompassing oligo to eutrophic conditions. A neural network-based regression model is also employed to derive Chl-a concentration in San Francisco Bay. We perform a consistency analysis between the constituents derived from Land-sat-9 and near-simultaneous Sentinel-2 imagery. The Chl-a and TSM retrievals are validated using in situ matchups. The results indicate relatively high consistency among the water quality prod-ucts derived from Landsat-9 and Sentinel-2. However, the Landsat-9 constituent maps show less grainy noise, and the matchup validation indicates relatively higher accuracies obtained from Landsat-9 (e.g., TSM R2 of 0.89) compared to Sentinel-2 (R2= 0.71). The improved constituent re-trieval from Landsat-9 can be attributed to the higher signal-to-noise (SNR) enabled by the wider dynamic range of OLI-2. We performed an image-based SNR estimation that confirms this as-sumption

    Detecting Changes by Learning No Changes: Data-Enclosing-Ball Minimizing Autoencoders for One-Class Change Detection in Multispectral Imagery

    Get PDF
    Change detection is a long-standing and challenging problem in remote sensing. Very often, features about changes are difficult to model beforehand, thus making the collection of changed samples a challenging task. In comparison, it is much easier to collect numerous no-change samples. It is possible to define a change detection approach using only easily available annotated no-change samples, which we henceforth call one-class change detection. Autoencoder networks being trained on no-change data are natural candidates for addressing this task due to their superior performance when compared with other one-class classification models. However, the autoencoders usually suffer from the problem of overgeneralization, i.e., they tend to generalize too well, thus risking properly reconstructing changed samples. In this article, we propose a novel data-enclosing-ball minimizing autoencoder (DebM-AE) that is trained with dual objectives—a reconstruction error criterion and a minimum volume criterion. The network learns a compact latent space, where encodings of no-change samples have low intraclass variance, which as counterpart has the identification of changed instances. We conducted extensive experiments on three real-world datasets. Results demonstrate advantages of the proposed method over other competitors. We make our data and code publicly available ( https://gitlab.lrz.de/ai4eo/reasoning/DebM-AE; https://github.com/lcmou/DebM-AE )
    • …
    corecore